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VARIANCE REDUCTION USING NONLINEAR
CONTROLS AND TRANSFORMATIONS

Peter A. W. Lewis
Richard L. Ressler
R. Kevin Wood

Department of Operations Research
Naval Postgraduate School

Monterey, CA 93943.

August,15 1988

Abstract

Nonlinear regression-adjusted control variables are investigated for imiproving variance
reduction in statistical and system simulations. To this end, simple control variables are
piecewise sectioned and then transformed using linear and nonlinear transformations. Opti-
mal parameters of these transformations are selected using linear or nonlinear ieast-squares
regression algorithms. As an example, piecewise power-transformed variables are used in the
estimation of the mean for the two-variable Anderson-Darling goodness-of-fit statistic 3.
Substantial variance reduction over straightforward controls is obtained. These parametric
transformations are compared against optimal, additive nonparametric transformations ob-
tained by using the ACE algorithm and are shown, in comparison to the results from ACE,
to be nearly optimal.

1 PRELIMINARIES

This paper investigates the use of possibly nonlinear, regression-adjusted control variables
for variance reduction in statistical and system simulation. Let C be a vector of control variables
which are correlated with (related to or associated with) a statistic of interest, Y. and assume
that C has a known mean vector E[C]. The object is to more accurately estimate E[Y] by
deriving a controlled statistic Y’ which has less variance than Y. A standard method for doing
this is via the linear, additive combination of Y and the components of C,

Y=Y -37(C - EC)). (0
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[he parameter vector Jis a vector of unconstrained constants which are to be chosen so as to
rinimize the variance of Y. Note that some components of C may be known power transfor-
mations of other components, so that polynomial control schemes are included in formulation
(1), Explicit expressions for the components of 8 which minimize the variance of ¥ can be
found in terms of the second order moments of Y and C, and with these parameters, ¥/ is an
unbiased estimate of £ [Y].

In particular. consider the case of a single, additive, linear control Y’ =Y — 3(C - E[C]).
Here 3 is chosen to minimize rar(Y’). This variance is minimized when 3 is proportional to the
correlation between (" and Y: the greater the correlation, the greater the effectiveness of the
control in obtaining variance reduction. Assuming var(Y) = var(C}, the result follows from:

rar(Y') = var(Y) 4+ B%var(C) - 2Bcov(Y,C)
var(Y) (1+ 8% = 28p(Y.C}) .

Pitferentiating with respect to 3 and setting the resulting expression equal to zero vields the
optimal value for .3

g =pY,C).

civilg
rar(}’) s 2 .
—— =1=p(Y, () :
rar(Y) pLY-C) ()
I particular,
rar(Y ) — 1'(17'()")) ( uar(Y’)) 9
100 - = - ——] =1 Y,.C 3
(\ rar(}’) 100 var(l) 00 p(¥.C) )

npeasiires the percent variance reduction resulting from the control. Without the assumption

ol equal variances. we have

3= 5v,0).
ac
while {2) still holds. Thus if p(Y. ). oy, and o¢ are known, p(Y, (") is a direct measure of
the varianee rediction which can be obtained with a single regression adjusted control. In fact
comparing correlations is a method for choosing between proposed controls.
This paper generalizes (1) by letting

}/I:)'—-Cl, (4)

where (" is any mean-zero linear or nonlinear parametric function of the components of (. i.c.
(" = f((_’:1> -FE [f(Ci)] For example, ¢’ might involve additive or multiplicative combi-
nations of nnspecified power transformations of the components of the original control vector .
Optimal or near-optimal values of the unknown parameters of these transformations, analogous
to 3 in (1), are obtained by minimizing the variance of Y/. However, the results are not explicit
functions of the joint and higher moments between Y and the set of control variables.




A Lo X 4

- -

Now f~r this more general case of multiple, possibly nonlinear. control variables we obtain,

using (4),
var(Y') ver(C') L oce )
Y = 1+ -2 (5)

1+ kQ - Qkp(Y, C,)

and v’

- 20 = 2o, - 7, (6)
where k is positive valued. While this last equation is simple in form, both p(Y,C’) and
k = o¢ci /oy are functions of the parameters in C’. Thus it is not true that in order to inaximize
the variance reduction with respect to the paramzters of the control function, one need oniy
maximize the absolute value of the correlation between Y and C".

When C’ is a linear additive function of the components of C as in (1), p(Y,C’) is a
quadratic function of the parameters § whose optimal values are a function of the correlation
matrix of (¥, (), i.e. the joint and higher moments between Y and the set of contro] variables.
In fact, explicit expressions for the optimal values of 3 are known (Rubinstein and Marcus,
1983). As an example. for two independent linear controls with known correlations with Y, it
follows from (5) that with the optimal values of 3,

. st

) = 1 o100 - (Y, o) (7)
Choosing control variables with maximum correlations with ¥ will, in this case, still maximize
the reduction in variance.

In the general case (4), when the controls are not independent, and oc//ay # p(Y,C’)

in (), p(Y.C’) does not yield an exact measure of variance reduction as does p(Y,C) in (3).
Additionally, the allowable range of parameters may be constrained in the function which
generates ("' out of the components of C by the requirement that F[C'] must be known.
exactly or approximately, and must be finite.

2 THE ACE PROGRAM

The ACE (Alternating Conditional Expectation) program (Bretman and Freidman, 1985)
provides a method for estimating the minimum variance obtainable by regressing a variable
Y on an additive combination of arbitrary transformations of another set of variables such as
the components of C'. As such it suggests that in a simulation context, more control (more
variance reduction) can be obtained with transformations of the chosen control variables. ACE
estimates transformation functions 8(Y) and ¥;(C;) to minimize the fraction of the variance of
¥ net explained by regression (e?) defined as follows:

B [(00r) - 5 0e) ]

(2(03 zﬂv/'l-"'vd’p) = E[()Z(Y)]
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The algorithm uses conditional expectations and alternates between improving the estimate of
6(Y ) and improving the estiinates of the ;(C;)s. The computational mechanics on finite data
sets of continuous variables involve the use of data smooths to approximate the conditional
expectations in order to repeatedly reduce the mean squared error until it is minimized.

The ACE procedure is nonparametric, with the transformations selected solely on the ba-
sis of the data sample. Minimal assumptions about the distribution of the sample or about
allowable transformations enable ACE to produce an estimate of the minimum mean squared
error between the transformed Y variable and the sum of the transformed components of C.
When ( has only one component, this is equivalent to maximizing the correlation between a
transformed Y and a transformed C.

Unfortunately, the transformations ACE selects cannot be used to develop control variables
for variance reduction since the transformations are non-parametric and the true means of
the transformed variables cannot be determined. However, one can use the minimum mean
sqrared error from ACE to obtain an upper bound on the variance reduction that can be
achieved between Y and C’ in a parametric control function such as (). Thus, ACE may be
used to gauge the effectiveness of any control function using a fixed set of control variables.
Since (4) does not allow for transformations of the dependent variable, ACE was intentionally
limited during this study tu using only linear transformations of Y.

3 THE SAMPLE ANALOG TO THE VARIANCE REDUC-
TION FORMULA

In practice, one has no theoretical information about the joint probability properties of Y
and (", or the joint probability properties of ¥ and the components of C. Instead one has a
simulation sample of size mn of independent replications, {Y;, C;} : ¢ = 1....,m, from which to
estimate E[Y]. Regardless of whether the sample is large or small, i.e. is a pilot sample or all
of the simulation data that will be available, one wants to m’.aimize the sample variance of Y.
Minimizing th sample variance involves, after subtracting Y from both sides of (4), minimizing

™, ();'—T)2 _ Zh (v -V -c?) (9)
m m
_ I (:‘?)24, "";nic'n—QZ:L (:i_?)c'( (10)

The left-hand side of (9) is the quantity to be minimized as E [)—} = F [ﬁ] = F[Y] since
E[C") is known to be zero. Thus either Y or Y7 can be used in the estimate of the variance
of Y’ Equation(9) shows that this estimate of the variance of Y’ is equal to the residual
sum of squares of the least squares regression of ¥; — Y on (”. Equation (10) involves, in its
first term, the total sum of squares, which estimates the variance of Y; in its second term the
sample variance of the zero mean C’; and in the last term the sample covariance of Y and C'.
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Rearranging terms in (10), we have

o (v-T) Em (w-v) erm (n-T)a wmen

1=1

m m m m

or

T (v-V) - (W-T) 2mm (v-Y)a wmoen
s, (-1 m(v-7) o (v-T)

The left-hand side of {11} is the usual R? regression measure and equation (11) may be rewritten
( g Y

(11)

as
Yol

52
RZ =92 c’
Sy

5%

As the sample analog to (6), (12) indicates that maximizing 2% through nonlinear least-
squares regression is equivalent to maximizing sample variance reduction when the optimal
parameters are unknown. Thus for C with multiple components, maximizing the effectiveness
of ' can be accomplished through estimating the parameters of C’ via multiple least-squares
regression of Y’ —Y on ' . A similar result relating optimal regression and optimal correlation
can be found in the ACE article (Breiman and Friedman, 1985).

With linear controls, linear least-squares regression will provide a global minimum for the
residual sum of squares, in turn maximizing the variance reduction for the sample. When the
control function is nonlinear, nonlinear least-squares regression will not necessarily determine
parameter values which globally minimize the residual sum of squares since the function could be
nonconvex. With a control function ¢’ = f(Q; Q) -F [f(Q; g)] that is nonconvex, there may
be many subopiimal local minima. In this case the choice of initial values for the parameters
in the nonlinear regression may significantly affect the amount of variance reduction abtained.
If one uses as starting values for 3 the special values which represent the linear case tor the
control, one should always do at least as well as the linear case regardless of nonconvexity.

One must be careful that while multiple regression may be computationally useful, the
distribniion theory behind multiple regression, which assumes fixed independent variables. does
not apply. Consequently, confidence intervals on parameter estimates cannot be determined
directly from the regression results.

(Y, C' =2k r(Y,C") = k2. (12)

4 APPROXIMATING OPTIMAL NONLINEAR TRANS-
FORMATIONS FOR NONLINEAR CONTROLS

Since ACE does not supply any parametric clue to the optimal transformations of the indi-
vidual components of (', approximations are needed for these transformations. A requirement
for the approximations is that they contain the linear additive case (1) as a special set of pa-
rameter values, thus ensuring that one attains at least the known variance reduction for this
case. The approximations studied here take two forms, piecewise linear controls, and standard
statistical parametric transformations, used separately or conjointly on each component of (.

ol
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4.1 Pilecewise Linear Transformations of Controls

Statistics are often nonlinear functions of the random variables from which they are de-
rived. Therefore one might expect some nonlinear controls to have a higher correlation with
Y than linear controls. While not a measurable guarantee of improved variance reduction, (6)
suggests that higher correlation indicates that a nonlinear control may be able to be a better
“control” than the linear controls. Given an initial guess at a viable linear control, one type of
nonlinear control can be formed by using indicator functions and “cutpoints” to form piecewise
linear transformations of the control. Graphical analysis can be useful in selecting the initial
cutpoint(s).

For example. a control variable (7 is split into two control variables about a cutpoint & as
follows:

C < C ifC>é

and (3 =

0 otherwise 0 otherwise. (13)

Oy =
By judicious choice of the variable cutpoint & or perhaps multiple cutpoints, least-squares
multiple regressiou can achieve a better fit without the use of additional control variables. As
an example let X be distributed as an independent Uniform (-.5. .5) variate. Let ¥ = X2 4+ ¢
where ¢ is distributed as independent Normal (0, 0.01). With 300 samples, using just X as a
linear control as in (1). linear least-squares regression yielded an R? of 0.00. However using X
to form two new controls as in (13), with § = 0, yielded an R? of .92 using linear least-squares
regression. If & — oc or & — —o¢, the ordinary linear control is obtained Of course. care must
be taken in determining the form of the control function to ensure it has mean zero, i.e. E[("(]
mnd T et he knewn Neta algn thet the regression is still linear if 8 s given, but it s
nonlinear otherwise. Finding an eptimal é then becames, in general. a nonconvex, nonlinear.
mathematical programming problem.

4.2 Transformations of Controls

Several standard transformations are used in staiistics aud Jdaia waalysic and these can
be applied to approximations for the optimal transformation of a control variable (". Power
transformations of controls, in addition to piecewise transformations of controls, introduce
nonlinearity into the controlled estimate of E [¥] while containing the untransformed control
as a special case. The power transformation used iunitially in this study is of the form 7 =
{.X? ~1)/p. for p > —1. This scaled power transformation has the property that as p — 0 the
limit is In X and when p = 1 it gives a shifted version of the original variable.

This power transformation can have vastly different effects for X > | and X < 1. The
curves i Figure | represent a sample of possible transformations. As one increases p. the
change in ihe nature of the function on either side of X' = | becomes more drastic. For large
values of p. large values of X are given added weight while for small values of p. the small
values of X are given the additional weight. Note that when p = 1, this is simply the linear
transformation. Thus optimizing using this transformation assures variance reduction at lrast
as good as in the linear case.

6
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Figure 1: Examples of Power Transformations of a Variable X.

Using. for example. the single control variable (", the resulting nonlinear control function is

P _ L 2
c’:a{g——l—ﬁi(—l]}.
p p

which was two parameters, p and 3. Of course, combinations of piecewise transformations and
power transformations are also possible, and it is this combination of noniinear controls which is
the main thrust of this paper. With this combination one hopes to come close to the maximum
theoretical variance reduction which could be obtained.

5 AN EXAMPLE

Estimating the mean of the Anderson-Darling goodness-of-fit statistic. W2, (Anderson and
Darling. 1952) provide< a good example of the benefits of piecewise internal controls and power
transformations. The example is artificial since £ [W2] is known to be one for all n. and
the determination of the quantiles is the real problem. However. the example is useful as an
illustration.



The statistic W can be determined as a function of n independent unit exponential randew
variabies £, (Lewis and Orav, 1987). Note first that one can write B¢ as a function of order
statistics from a unit exponential distribution as follows:

Wiz —n— (07" ; =i {1 - o a2+ 1 B (14)

where the E(y are the order statistics from a unit exponential population. These order statisties
can in turn be expressed in terms of the n independent unit exponential random variebles [

Ey = Z—-f—’— 15

7=1 (n—J+ )

as

Together (111 and (15) give 182 as a function of n independent exponential random variabies.
Ihe independence of these random variables makes them ideal for controlling W2 The case
v 2w presented here, for which (7) holds with ) = Ey and ¢ = F).

\s inentioned before, graphical methods can sometimes be useful in determining types of
controls or aspects of contiols. Two useful plots of W7 are presented here. Figure 2 is 2
~urface plot of W5 over a sirall region of the £y, F, plane where the majority of valnes ocenr.
I'his is not a density plot, hat a representation of the functional relationship between the two
independent exponentials and the 1877 values each pair generates. Subsequent surface plots of
the control functions likewise do not portray density: just the surface generated by the control
function. As an indicator of the density of points on the W} surface, Figure 3 is a sample
bivariate histogram of 1000 independent pairs of unit exponentials. While one could plot oy
actnal bivariate exponential density, the discrete nature of the histogram allows easier visial
comparisons of density. Together, Figures 2 and 3 indicate why noulinear controls may prove
nseful for controlling Wi, Clearly the relationship hetween W2, Ep and Fy is highly nontinear
sitggesting the use of nonlinear controls. Figure 3 supports one’s intuition that the majority of
pairs of the bivariate exponential are close to the origin. Suspecting this one may be tempted
to nse a linear control to just approximate the surface in this region. However Figure 3 also
shows a significant number of pairs thronghout the plane. Thus in order for (7 to be an
effective control. the entire surface should be approximated by the control. This wonld require
a nonlinear control and nonlinear regression.
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Six different linear and nonlinear control func.ons for estimating the mean of W§ were
evaluated using a single sample of 500 pairs of unit exponentials and their associated W7
values. The experimental, APL-based GRAFSTAT, from IBM Research. was used for all of the
computing. The following six control functions were compared:

CIZIB](El—l)‘{"ﬁ’z(Ez—l)Z (16)

C'=B81(Ei— 1)+ 32(E2 - 1)+ B3 (E} - 2) + 34 (E3 = 2); {17)
Py _ ,:'71_

C'ZZleﬂj[‘EJ_P S B L!P,l (%)

s R | JF]_ . i U
=3By =D+ 820 k2 “U‘Hh(ilﬁl—h [ELH_']

)
4 , Fak ET%
. 2 "’ -
(=30 ket ik [ =k { pm ” : (20)

where
. £, k<8 . 0 E, <94, s
E, = { 0 otherwise and £y = F, otherwise J=1L=
aud
_ -y S [z‘pik -1 . ‘/‘p':k -1
Ch= e Tk G | T - E R | (21)
where

0 otherwise, 0 otherwise

Ey = { FoEySon g { E, 6y < By <bn

Epa= { By By >ep j =12

0  otherwise

As expected, the simplest controls. (16} and (17). with straightforward control functions,
wore usually less effective than the nonlinear controls. The controls give. by (16) and (17}
are referred to as the “standard™ controls because their unknown parameters can be computed
using linear least-squares regression. Since the necessary expected values of the controls just
involved the first two moments of the exponentials, they were determined analytically and not
estimated. The remaining parameters for controls (16) and (17), respectively J; and 3. and
J1. 33, 33 and 3, were computed using linear least-squares regression. Since control (1G] is
linear function of £y and £, and W22 is a very nonlinear function of £y and E,, this control,
not surprisingly. achieved an R? of only .2265. This poor performance could also be predicted
by using the sample estimates for p(1.2, £'1) and p(WE E2) in (7). If the estimates were the

10
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true correlations, the optimal 8's would only yield a 22.66 percent variance 1eductior.. The
parabolic shape of (17), as shown in Figure 4, enabled tie control function to achieve an R?
of .5627. While better, it is far from optimal. Note that on the graphs of the controls the
predicted values of the controls are centered about zero, the mean of .

16}
n -
)]
3 10}
g N
>
o 06
[+h) -
-
S of
% bl
Q‘ Sl

Figure 4: Surface generated by the parabolic linear control given in (17). The control is linear
since the powers are fixed.

For control (19) only the linear terms’ expected values could be calculated analytically. The
other two expected values were functions of the unknown parameters and had to be recalculated
based on the current parameters during the optimization. For controls (18), (20), and (21)
none of the expected values could be determined analytically so all were calculated during the
optimization. All of the parameters for the nonlinear controls were estimated via the nonlinear
regression segment of GRAFSTAT. For nonlinear regression, GRAFSTAT uses a form of the
Marquadt algorithm (Marquadt, 1963) which allows bounds to be placed on the parameters.
Lower bounds of -.99 were necessary on the power parameters, Pjk. since the expected values
of the exponentials (involving the gamma function) are not defined for p,x < —1. A reasonable
upper bound on each p,x was found useful in speeding convergence.

As the control functions became more nonlinear, their effectiveness usually increased. Al
lowing the powers to float in control (18) versus being fixed in control (16) gave a slight improve-
ment: the R? went from .2265 up to .4640. This was not as good however as the “standard”
control (17) with two linear terms and two quadratic terms which achieved an R? of .5627.
Adding the two linear terms to control (18) resulied in control (19). Now allowing the powers
to float in control (19), versus being fixed in control (17), enabled the surface to fit more closely
and thus the B? for (19) was .7422. This definite improvement over the “standard™ controls
can be seen in Figure 5.

11
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Figure 5: Surface generated by “non-standard™ control with linear and nonlinear terms given

in (19).

Originally, the cutpoints for controls (20) and (21) were parameters to be optimized. Unfor-
tunately, this made the optimization unstable and the results unreliable. Thus, the cutpoints
were fixed at selected quantiles and not included as parameters in the nonlinear regression.
Selection of a good cutpoint was done by examining the results of a short sequence of regres-
sions. For control (20) a cutpoint at the .5 quantile was the most effective one found for this
sample. Comparing Figure 6 to Figure 5 shows the impact of adding nonlinearity by the use
of the cutpoint. The R? for control (20) was .8216. The results of using the estimated pa-
rameters for (20) on three independent samples of 1000, Table 1, indicate that even though
the regression-estimated parameters are biased for the original sample, (20) is still effective in

controlling other samples.

Sample 1 | Sample 2 | Sample 3
Y | .9882 1.0022 1.0219
sy | 0261 0262 0282
h?' 9972 1.0095 1.0238
sy | .0110 .0124 .0129
R* | 8239 7759 .7905

Table 1: Effect of the nonlinear, single-cutpoint control given in (20) on three independent

samples other than the regression sample.

12
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Figure 6: Surface generated by the nonlinear. single-cutpoint control given in (20).

As the number of cutpoints increases to two for control (21), one gets a more effective
control at the cost of increased computational complexity. The computational complexity
increases because the additional cutpoint creates more parameters and because the computation
of expected values becomes more expensive. As before. the cutpoints were fixed at selected
quantile values. Which values to select was a matter of performing a series of regressions on a
grid of values. Figure 7 shows that some pairs of cutpoints were better than others. Figure 8
shows that the best cutpoints for this sample on the grid examined, the .30 and .65 quantiles.
vield a control which is an excellent approximation to the W7 surface. The regression with
these cutpoints on the original sample yielded an R? of .8372.

This last control, (21), was then tested on independent samples and the R? was compared
to results from ACE. Table 2 indicates the results for three samples of 1000 W} values. Again
the R? values are almost as good as the original sample, and the control is effective in all three
cases, ACE was given the data generated by using the cutpoints on the original sample as the
independent variables. The R? value derived by ACE was .8560 showing that confrol (21) is
nearly optimal for the control variables used.

13
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Figure 8: Surface generated by nonlinear, double-cutpoint control given in (21).
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Sample 1 | Sample 2 | Sample 3
Y 9534 1.0230 9842
sy ] .0230 .0265 0255
Yo .9997 1.0157 1.0001
syer | 0094 0121 0119
R | 8350 7925 8153

Table 2: Effect of the nonlinear, double-cutpoint control given in (21) on three independent
sample other than the sample used for regression.

6 SUMMARY AND CONCLUSIONS

This study demonstrates the potential effectiveness of nonlinear regression-adjusted controls
in reducing variance in simulations. Varnous piccewise linear and power transformations were
shown to be useful in developing control functions. There are many questions yet to be answered
though. Some areas of investigation are listed.

I. Finding contrels for the variance, percentiles and quantiles of W4, Once a suituble control
function is developed. can it be used with different parameters for other aspects of the
I I
data?

2. Finding controls for W2 for n > 2. As the dimensionality increases, one may not need
every independent variable in the control function to get effective control. Measures of
influence or leverage could possibly be used to reduce the size of the control function.

3. Using other transformations such as

(b1 7= (Lxr =Y - 1)) /. or
(¢c) 7 = ((”'(-\"'*U/I' _ 1) /5.

These transformations represent a broad spectrum of transformations on a variable as can
he seen in Figures 9, 10 and 11. Note also that transformation (3a) and transformation
(3c) contain the linear case as a special set of parameter values. The first transformation.
{3a). is a positive weighting of all values, with large values weighted more than small
values. By varyving the v parameter, one can scale the effects of the weights from very
large for large 5 to very slight for small 4. The second transformation. (3b), applies
small negative weights tor values less than 1. For values larger than 1 it allows for a wide
range of positive weighting schemes as in transformation (3a). The third transformation.
(3c). is similar to the straightforward power transformation, (Figure 1), but with more
parameters. Thus it allows for more flexibility and ircreased curvature for smaller values
of the parameters. The difficult part with these transformations, as usual, is computing
the necessary expected values.
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Figure 10: Transformation (3b) applied to a Variable X.
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Figure 11: Transformation (3c) applied to a Variable X,

1. Using similar controls for ganwa family statistics such as those encountered in queuing
problems. Preliminary results with internal control of a regenerative simulation estimate
of the waiting time of the nth customer in an M/M/1 queue (Iglehart and Lewis, 1979)
indicate that allowing non-integer powers in the control function can substantially increase
the effectiveness of the control. On a sample of 20,010 busy periods, with p = Sand p = 1,

a linear control function obtained an R? of .59 while a nonlinear control function obtained
an R? of .69,

t

Investigating problems with estimating the variance of the variance-reduced estimate of
ETY]. This is a very difficult problem for which sectioning or bootstrapping may be
needed.
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